简介:
|
We propose a new asset pricing model that is applicable to the big panel of return data. Our model aims to explain the conditional mean of the return from the conditional distribution of the return, which is approximated by a step distribution function constructed from conditional quantiles of the return. To study conditional quantiles of the return, we propose a new conditional quantile variational autoencoder (CQVAE) network. The CQVAE network specifies a factor structure for conditional quantiles with latent factors learned from a VAE network and nonlinear factor loadings learned from a "multi-head" network. Under the CQVAE network, we allow the observed covariates such as asset characteristics to guide the structure of latent factors and factor loadings. Furthermore, we provide a two-step estimation procedure for the CQVAE network. Finally, we apply our CQVAE asset pricing model to analyze a 60-year US equity return data set. Compared with the benchmark conditional autoencoder model, the CQVAE model not only delivers much larger values of out-of-sample total and predictive R^2s, but also earns at least 30.9% higher values of Sharpe ratios for both long-short and long-only portfolios. |